Click a link below or use the bookmarks.

Contents

- General Operation
- Milling
- Multiaxis Machining
- Turn / Mill-Turn
- Wire EDM
- Simulation / Step Thru Toolpath / Edit Toolpath
- Technology Database
- Posting
General Operation

Updated - Build Info File

Purpose Report errors that have been corrected in the current build of CAMWorks 2010.

Implementation On the Start|Programs menu, select CAMWorks2010, then select Resolved CPR’s. You can also open the file CW2010BuildInfo.rtf in the \lang\xxxx folder (where xxxx is the language: e.g., \lang\english).

New – Windows 7 Support

Purpose Support CAMWorks in Windows 7.

Implementation CAMWorks 2010 and 2010x64 will run in SolidWorks/CAMWorks Solids 2010 on Windows 7 Professional, Ultimate and Enterprise editions.

New – Operation Dialog Preview Display Option

Purpose Provide an option when selecting Preview in an operation dialog box so the dialog box does not collapse automatically. This is beneficial to users running dual monitors.

Implementation A *Collapse operation dialog on preview* option on the Display tab in the CAMWorks Options dialog box controls the automatic collapse.

Improved – Operation Dialog Box Active Tab

Purpose Provide an option that controls which tab is active when operation dialog boxes are opened.

Implementation The *Open all operation dialogs to last page* option on the Display tab in the CAMWorks Options dialog box controls whether all operation dialog boxes open to the active tab of the last closed dialog box (checked) or the first tab in the dialog box (unchecked).
Improved – Convert Insert Setup Dialog Boxes to PropertyManager Format

Purpose Convert Insert Mill, Turn and EDM Setup dialog boxes to the PropertyManager format.

Implementation As part of an ongoing project to update the CAMWorks user interface, the Insert Mill, Turn and EDM Setup dialog boxes have been converted to PropertyManager format.

Improved – Tree Icons

Purpose Improve the identification of tree items.

Implementation Machine and Feature icons have been redesigned to be more three-dimensional. Interactively created Mill features are now identified with an "i" on the icon.

Improved - Estimated Machine Time Calculation

Purpose Improve the estimated machining time for mill and turn operations.

Implementation Numerous new time related parameters have been added to the definition of each machine in the TechDB. The machining time computation uses this information plus expanded consideration for changing federates, which results in closer estimates. In Turning, the estimated time now considers constant surface speed to estimate machining time.
Improved – Recognition of Filleted and Tapered Features

Purpose
Improve recognition of filleted and tapered features.

Implementation
Additional filleted and tapered features can be created using Interactive Feature Recognition.

Improved – Shaded Mill and Turn Tool Display for Operations

Purpose
Display the tool in shaded mode when the Tool page is active in an Operation dialog box.

Implementation
The display is based in the settings in Step Thru and Edit Toolpath; however, if a tool and/or holder display is set to None, the tool will display in shaded mode for operations.

Improved – Shaded Mill and Turn Tool Display in Step Thru and Edit Toolpath

Purpose
Provide Shaded and Translucent display modes for tools and holders while in Step Thru or Edit Toolpath functions.

Implementation
Drop down buttons for mill and turn tool and holder displays have been added to the Step Thru Toolpath toolbar and the Edit Toolpath dialog box. Display modes are None, Wireframe, Translucent, Shaded and Shaded with Edges. When the display mode is changed in one of these functions, it is automatically updated in the other.
Milling

New – 3 Axis Minimum Tool Protrusion Calculation

Purpose
For 3 axis toolpaths, provide functionality to compute the minimum tool protrusion needed to avoid collision with the tool holder.

Implementation
For Area Clearance, Z Level, Pattern Project, Pencil Mill, Constant Stepover, Curve Project and Flat Area operations, an option has been added to calculate the minimum tool protrusion. The *Calculate min protrusion* option on the Advanced tab is enabled when Enable holder avoidance is not active. When *Calculate min protrusion* is checked, the minimum protrusion needed to avoid a holder collision and the current protrusion are displayed. Based on these values, you can decide whether you want to change the current tool protrusion.

New – Mirror Toolpaths

Purpose
Allow toolpaths for each operation to be mirrored about an axis that lies in the XY plane.

Implementation
Controls are provided on the Advanced tab of each mill operation to be able to mirror and offset the toolpath. This function is available for 2 Axis, 3 Axis Mill and Multi-axis Machining operations. This function is not supported for 3 Axis Rough and 3 Axis Finish operations and Mill operations where climb and conventional milling is active.

Improved – User Defined Tools and Holders Utility

Purpose
Convert the mill tool and holder utility user interface to the PropertyManager format.

Implementation
The CW-Tooling Utility, previously available as a separate program in the CAMWorks Utilities, has been incorporated into CAMWorks. The *User Defined Tools and Holders* command on the CAMWorks menu displays the Create Tool/Holder PropertyManager. The User Defined Tools and Holders command is used to create user defined mill tools and holders.
New – Omit Mill Holder Message

Purpose
Provide an option to omit the message to update the holder when changing mill tools.

Implementation
When the message displays, you can select to not show this message again.

Alternatively, the *Omit mill holder message* option on the General tab in the CAMWorks Options dialog box allows you to turn off/on the message.

Improved – Assembly Mill Setup Offsets

Purpose
In assembly mode Mill Setups, assign offset values based on the part name and mill part setup.

Implementation
The Offsets tab in the Setup Parameters dialog box displays an additional column in the table of offsets that indicates the Part Setup name. A vector displays from the operation setup origin and part setup origin to show what the offsets are.

Improved – Contour Mill Toolpath Computation and Display Options

Purpose
Provide options for Contour Mill operation toolpaths when *CNC compensation* is set to On and *Toolpath center* is set to Without compensation.

Implementation
The Setup tab in the Machine dialog box for Mill and Mill-Turn machines contains options that affect the computation and display for Contour Mill toolpaths.
Multiaxis Machining

Improved – Spiral Toolpath

Purpose
Apply the spiral motion to the entire toolpath or only the links joining passes.

Implementation
When Constant Z Slice cut is active with the Spiral pattern, the *Blend spiral along distance* option can be enabled to toggle the spiral behavior.

Improved – Entry/Retract Tool Orientation

Purpose
Allow the tool orientation to remain constant up to a user specified distance before contacting the part.

Implementation
When the Clearance Type is set to Plane in Z, Plane in X or Plane in Y, new options are provided that maintain the tool's initial orientation while approaching and entering the clearance area. This orientation will be maintained up to a user specified distance.

Improved – Entry/Retract

Purpose
If a rapid move follows a cylindrical path, allow the user to control the number of steps to approximate the rapid move.

Implementation
Rapid moves along a circular path are defined as multiple straight line moves. The number of these moves is defined on the Entry/Retract tab by defining a value for the *Rapid angle step*. A small value like 1 degree may cause some machines to slow down since the rapid moves are usually not smoothly interpolated by CNC machines. Larger values like 90 degree would avoid this problem, but then there is the potential of a collision because the moves are simplified to a square.
Improved – Tangent Leadin/Leadout Arc Direction

Purpose
Control the direction of a tangent leadin or leadout arc.

Implementation
When the leadin or leadout move is specified with one of the tangent arc options, there are actually two possibilities of how the tangent arc can approach or retract from the part. The new option *Flip arc* will generate a tangent arc move that is mirrored relative to the current arc move.

Improved – Leadin/Leadout Home Position

Purpose
Allow the toolpath to start and/or return to a user defined home position.

Implementation
The Entry/Retract tab provides options to define the home position and whether to apply the home position to the leadin or leadout move.

Improved – Leadin/Leadout Tool Axis

Purpose
Provide additional control over the tool axis orientation during the leadin and leadout of a toolpath.

Implementation
Previously CAMWorks supported Fixed and Tangent options for defining the tool axis orientation during the leadin or leadout moves. It is now possible to define that the tool axis will be at a tilted position for any leadin or leadout type. If the leadin or leadout is Parallel Line, an option to define the tool axis as *Orthogonal to cut direction* is available.
Improved – Sharp Corner Control

Purpose
Enable the toolpath to transition around a sharp edge corner in a loop to maintain the sharp edge.

Implementation
When the toolpath transitions around an external sharp edge, the toolpath rolls around the edge, which may result in a small amount of rounding on the edge. In order to maintain the sharpest possible edge, an option has been added to transition the corner with a loop. Additional controls are provided to define the corner radius and the max angle for the loop.

Improved – Rest Machining

Purpose
When a toolpath is computed with consideration of the work in process (rest machining), allow the toolpath to follow the stock shape when linking cuts.

Implementation
When Rest machining set to *From WIP* or *From STL File*, a new link type has been added on the Links tab that allows the link moves to follow the WIP or STL file.

Improved – Rest Machining

Purpose
Ignore small toolpath segments that may result during rest machining.

Implementation
Rest machining may result in small areas of toolpath that could be omitted without affecting the machined area. It is now possible to filter small toolpath sections from the final output.
Improved – Swarf Machining

Purpose
Provide an option that attempts to take corrective action and produce a more regular motion to the tool axis if the tool axis becomes twisted during the swarf machining of impeller blades.

Implementation
This option on the Axis Control tab is active when the Tool axis is *Tilted Relative To Cutting Direction* and the Side tilt strategy is set to *Follow Surface ISO Direction*.

Improved – Impeller Blade Machining

Purpose
Provide additional controls over the machining of impeller blades.

Implementation
Numerous new options on the Axis Control tab allow greater control while machining impeller blades. These options are available when *Tool axis will be* is set to *Tilted Relative To Impeller*. The online help explains these controls.

Improved – Tool Axis Control

Purpose
Provide an additional option of smoothing toolpath vectors.

Implementation
When *Tool axis will be* is set to *Tilted Relative To Cutting Direction* and the Side tilt strategy is *Ortho to Cut Direction At Each Contour*, the *Approximate* option now includes the selection *Smooth (local)*.
Improved – Gouge Checking - Retract Tool in User Defined Direction

Purpose
Provide the ability to move the tool along a user defined direction.

Implementation
When the Gouge Check Strategy is set to *Move Tool Away*, the Retract tool options now include the ability to retract the tool along a *User defined direction*. When this option is selected, there are several settings to control how the tool is moved. These parameters are explained in the online help.

Improved – Gouge Checking

Purpose
Allow the tool to retract along a vector computed as the intersection of the tool and faces.

Implementation
If swarf machining with a tapered tool, it is possible to have CAMWorks retract the tool along a line that is automatically calculated as a line of contact between the side of the tool and the feature faces.

Improved – Gouge Checking Against Tip of Tool Only

Purpose
Gouge check against the tip of the tool only.

Implementation
When the tool is a ball or hog nose, it is possible to gouge check only the tip radius of the tool.

Improved – Roughing

Purpose
Apply the multiple axial cut depths to certain portions of the toolpath.

Implementation
When Axial cut depths is selected on the Roughing tab, you can apply the multiple depths to the Entire Toolpath, the First slice only or the First pass only.
Improved – Rotate Toolpaths

Purpose
Allow a transform along the rotation axis to be applied to a rotated toolpath.

Implementation
If rotating a toolpath, the rotated copies can be moved along the rotation axis. An initial transform distance, as well as a separate distance, can be specified for the second and subsequent rotated toolpaths.
Turn / Mill-Turn

Improved – Turn Toolpaths with Varying Allowances

Purpose Provide the ability to define varying allowances on a turn toolpath.

Implementation A *Variable allowance* option has been added for Face Rough, Face Finish, Turn Rough, Turn Finish, Rough Groove, Finish Groove, Bore Rough, Bore Finish and Cutoff operations. When this option is checked, you can assign varying allowances to each segment in the feature.

![Variable allowance option](image)

New - Define Turn Stock from STL File

Purpose Provide the ability to select an STL file as a stock for a turn or mill/turn part.

Implementation In the Manage Stock dialog box, an STL file can be selected for the stock definition for turn and mill/turn machines. This file will be used for toolpath computation and simulation.

![Manage Stock dialog box](image)

New – Turning Below Centerline

Purpose Generate turn toolpaths for conditions where the toolpath is below the centerline of the part.

Implementation By default CAMWorks generates toolpath above the turn centerline when machining with a Rear turret tool and below the turn centerline when machining with a Front turret tool. It is now possible to machine the opposite side of the turn centerline by selecting from the newly supported holder orientations and enabling the *Mirror about centerline* option on the Face Rough, Face Finish, Turn Rough, Finish Rough, Rough Groove, Finish Groove, Bore Rough, Bore Finish, Thread and Cutoff tabs. When selecting *Mirror about centerline*, the feature geometry is effectively mirrored about the turn centerline.

Improved – Turret Definition for Post Operations

Purpose Support the definition of which turret a Post Processor operation is to be included.

Implementation When the machine type is Turn or Mill/Turn and the machine definition is for two turrets, the *Turret* option in the Insert Post Operation dialog box allows you to specify whether the post operation is associated to the front or rear turret.

Improved – Turn Feature Extents

Purpose Provide the ability to set the color for Turn feature extents.

Implementation The color is defined on the *Display* tab in the CAMWorks Options dialog box.

![Display tab](image)
Improved – Turn 3D Stock Display

Purpose Display Turn stock as a 3D transparent shape.

Implementation Done automatically.

Improved – Turn WIP Display

Purpose Provide the ability to set the WIP display as shaded.

Implementation The Display Work-In-Process command on the NC Manager shortcut menu now has a drop down menu with selections for None, Wireframe and Shaded.

Improved – Single Pass for Groove Cycles

Purpose Enable the toolpath to for Rough and Finish Groove operations to make a single cut down the middle of the groove.

Implementation When a groove tool is the same width as the groove feature a single cut is made down the center of the groove feature.

Improved – Identification of Active Tool Turret

Purpose Provide faster identification of which turret is being used for the current operation.

Implementation For Turn and Mill-Turn, Operation items in the Operation tree now include [Front] or [Rear].
Wire EDM

Improved – Entry/Retract for 4 Axis Toolpaths

Purpose
Provide an option to observe both the lower and upper curve entry location for 4 axis Wire EDM toolpaths.

Implementation
CAMWorks provides the ability to define an entry location on both the lower and upper curves of a 4 axis toolpath. However, by default CAMWorks attempts to limit the side tilt angle of the wire during leadin and leadout by observing one of the locations and automatically computing the other. In cases where it is desired to observe both the lower and upper entry point, you can disable the *Minimize side angle* option on the Leadin/Out tab.
Simulation / Step Thru Toolpath / Edit Toolpath

Improved – Toolbars Revised for Consistency

Purpose
Provide a similar interface for Simulation, Step Thru Toolpath and Edit Toolpath toolbars.

Implementation
Toolbar buttons are the same for Simulation, Step Thru Toolpath and Edit Toolpath. The figure below shows the Step Thru Toolpath toolbar.

![Step Thru Toolpath](image)

New – Vericut Interface

Purpose
Develop an interface between CAMWorks Mill and Vericut Machine Simulation.

Implementation
The Vericut program is a separate 3rd party software product, developed by CGTech in Irvine, California, that is used to simulate full machine animation based on CNC G-code.

Improved – Simulation

Purpose
Provide an option to automatically adjust target part deviation to reduce the system memory required to simulate large parts.

Implementation
System memory requirements increase as the target part deviation decreases. On large models where the target part deviation is very small, it is possible to run out of system memory causing CAMWorks to terminate with insufficient memory. The *Use memory safe limits* option on the Simulation tab in the CAMWorks Options dialog box analyzes the model and modifies the minimum and maximum values based on the model size. By increasing the allowed minimum target part deviation, system memory requirements are also decreased, thereby reducing the occurrence of out of memory conditions.
Technology Database

New – Implement Area Roughing in 5 Axis

Purpose Modify the TechDB to support setting defaults for the Area Roughing options in Multiaxis Mill operations.
Implementation Defaults for the options in the Area Roughing dialog box can now be set in the TechDB.

New – SQL Server Support for TechDB

Purpose Support SQL Server 2005 as a database.
Implementation Access forms can connect to SQL Server 2005 or SQL Server 2005 Express on the backend thereby providing client-server support.
Posting

Post customization is required in order to use new commands and variables. These commands and variables are not supported in previous versions of CAMWorks or in any ProCAM product.

New – Variables

TLP_FEAT_SETUP_NAME
Type: CHARACTER
Usage: This variable stores the setup name for the current toolpath feature. Available in Mill, Turn and Mill/Turn.

SYNC_CODE_COMMENT
Type: CHARACTER
Usage: This variable stores the sync code comment. Available in Turn and Mill/Turn. These variables are set in CW2010, however the option of syncing turrets is not implemented in CW2010.

REAR_SYNC_CODE
P_REAR_SYNC_CODE
Type: INTEGER
Usage: This variable stores the current and previous rear turret sync code number. Available in Turn and Mill/Turn. These variables are set in CW2010; however the option of syncing turrets is not implemented in CW2010.

REAR_SYNC_CODE_TYPE
Type: INTEGER
Usage: This variable stores the rear turret sync code type. Available in Turn and Mill/Turn. These variables are set in CW2010; however the option of syncing turrets is not implemented in CW2010.

REAR_SYNC_CODE_TYPE= SYNC_CODE_UNKNOWN
REAR_SYNC_CODE_TYPE= SYNC_CODE_BEFORE_START
REAR_SYNC_CODE_TYPE= SYNC_CODE_BEFORE_FIRST_MOVE
REAR_SYNC_CODE_TYPE= SYNC_CODE_AFTER_END

FRONT_SYNC_CODE
P_FRONT_SYNC_CODE
Type: INTEGER
Usage: This variable stores the current and previous front turret sync code number. Available in Turn and Mill/Turn. These variables are set in CW2010; however the option of syncing turrets is not implemented in CW2010.

FRONT_SYNC_CODE_TYPE
Type: INTEGER
Usage: This variable stores the rear turret sync code type. Available in Turn and Mill/Turn. These variables are set in CW2010; however the option of syncing turrets is not implemented in CW2010.

FRONT_SYNC_CODE_TYPE= SYNC_CODE_UNKNOWN
FRONT_SYNC_CODE_TYPE= SYNC_CODE_BEFORE_START
FRONT_SYNC_CODE_TYPE= SYNC_CODE_BEFORE_FIRST_MOVE
FRONT_SYNC_CODE_TYPE= SYNC_CODE_AFTER_END

SYNC_CODE_UNKNOWN = 0
SYNC_CODE_BEFORE_START = 1
SYNC_CODE_BEFORE_FIRST_MOVE = 2
SYNC_CODE_AFTER_END = 3
ARC_NORM_X
P_ARC_NORM_X
N_ARC_NORM_X
Type DECIMAL
Usage This variable stores the current, previous and next X axis arc normal vector. Available in Mill, Turn and Mill/Turn.

ARC_NORM_Y
P_ARC_NORM_Y
N_ARC_NORM_Y
Type DECIMAL
Usage This variable stores the current, previous and next Y axis arc normal vector. Available in Mill, Turn and Mill/Turn.

ARC_NORM_Z
P_ARC_NORM_Z
N_ARC_NORM_Z
Type DECIMAL
Usage This variable stores the current, previous and next Z axis arc normal vector. Available in Mill, Turn and Mill/Turn.

New – Post System Calc Sections
CALC_ADD_REAR_SYNC_CODE
CALC_ADD_REAR_SYNC_CODE gets called when a command to output rear sync code is encountered and the post variables SYNC_CODE_COMMENT, REAR_SYNC_CODE and REAR_SYNC_CODE_TYPE are set.

CALC_ADD_FRONT_SYNC_CODE
CALC_ADD_FRONT_SYNC_CODE gets called when a command to output front sync code is encountered and the post variables SYNC_CODE_COMMENT, FRONT_SYNC_CODE and FRONT_SYNC_CODE_TYPE are set.